Search results for "Levi-Civita connection"
showing 3 items of 3 documents
The Riemannian manifold of all Riemannian metrics
1991
In this paper we study the geometry of (M, G) by using the ideas developed in [Michor, 1980]. With that differentiable structure on M it is possible to use variational principles and so we start in section 2 by computing geodesics as the curves in M minimizing the energy functional. From the geodesic equation, the covariant derivative of the Levi-Civita connection can be obtained, and that provides a direct method for computing the curvature of the manifold. Christoffel symbol and curvature turn out to be pointwise in M and so, although the mappings involved in the definition of the Ricci tensor and the scalar curvature have no trace, in our case we can define the concepts of ”Ricci like cu…
Some remarks on minimal surfaces in riemannian manifolds
1970
Feuilletages Riemanniens singuliers
2006
Abstract We prove that a singular foliation on a compact manifold admitting an adapted Riemannian metric for which all leaves are minimal must be regular. To cite this article: V. Miquel, R.A. Wolak, C. R. Acad. Sci. Paris, Ser. I 342 (2006).